
Cache:

Ziyue Qiu*º^, Juncheng Yang^, Juncheng Zhang*, Cheng Li*,
Xiaosong Ma+, Qi Chenº, Mao Yangº, Yinlong Xu*

Rethinking Cache Management for Modern Hardware

* University of Science
and Technology of China

^ Carnegie Mellon
University

º Microsoft Research + Qatar Computing
Research Institute

List-based Software Cache Dominant

• List-based caches are dominant, e.g., LRU, FIFO, LFU variants

1

List-based Software Cache Dominant

• List-based caches are dominant, e.g., LRU, FIFO, LFU variants
• Main operations incurred by application accesses:

• lookup
• insert (write after cache miss)

1

List-based Software Cache Dominant

1

• List-based caches are dominant, e.g., LRU, FIFO, LFU variants
• Main operations incurred by application accesses:

• lookup
• insert (write after cache miss)

• Common implementation: hash table + doubly-linked list

Locks, Locks, Locks Everywhere

• Insert: insert to head and evict the tail (lock)

2

Locks, Locks, Locks Everywhere

• Insert: insert to head and evict the tail (lock)
• Lookup: delink and push to front (also lock!)

2

Locks, Locks, Locks Everywhere

• Insert: insert to head and evict the tail (lock)
• Lookup: delink and push to front (also lock!)
• Cache internal operations: update-intensive & contention-heavy

• Even under cache-friendly, read-only workloads

2

• Before fast SSDs:
• Low Concurrency: low hit latency (< 1 µs)

Huge Management Cost

3
Original Meta LRU

* Run on Meta HHVM LRU Cache

• Before fast SSDs:
• Low Concurrency: low hit latency (< 1 µs)
• Slow Storage Backend: long latency (> 5 ms) and low bandwidth

Huge Management Cost

3
* Run on Meta HHVM LRU Cache

Original Meta LRU

• Now:
• Increasing cores (concurrency): AMD up to 192 threads
• Shrinking latency gap: Intel Optane SSD 5 µs,

Samsung Z-SSD 16 µs << HDD 5~10 ms (4 KB read)

Huge Management Cost

4
Original Meta LRU

• Increasing cores (concurrency): AMD up to 192 threads
• Shrinking latency gap: Intel Optane SSD 5 µs,

Samsung Z-SSD 16 µs << HDD 5~10 ms (4 KB read)
• Latency skyrockets as concurrency increases

Huge Management Cost

4
Original Meta LRU

• Increasing cores (concurrency): AMD up to 192 threads
• Shrinking latency gap: Intel Optane SSD 5 µs,

Samsung Z-SSD 16 µs << HDD 5~10 ms (4 KB read)
• Latency skyrockets as concurrency increases
• Close to half of Optane SSD read latency

Huge Management Cost

4
Original Meta LRU

 new in-memory cache design for scalability

Huge Management Cost

FrozenHotOriginal

87%

5

• Cache-friendly: random, highly skewed accesses *

Workload Examination for Cache Redesign

* LHD: improving cache hit rate by maximizing hit density, NSDI’17

…
LRU List

MRU LRU

Mostly hits, each incurring promotions => shuffling hottest objects

6

• Cache-friendly: random, highly skewed accesses *

Workload Examination for Cache Redesign

* LHD: improving cache hit rate by maximizing hit density, NSDI’17

…
LRU List

MRU LRU

Mostly hits, each incurring promotions => shuffling hottest objects

No need for frequent LRU-like list manipulation

6

• Cache-friendly: random, highly skewed accesses *

• Cache-unfriendly: sequential scans *

Workload Examination for Cache Redesign

* LHD: improving cache hit rate by maximizing hit density, NSDI’17

…

…

LRU List
MRU LRU

Mostly hits, each incurring promotions => shuffling hottest objects

Mostly misses => useless list maintenance
LRU List

LRUMRU

No need for frequent LRU-like list manipulation

6

• Cache-friendly: random, highly skewed accesses *

• Cache-unfriendly: sequential scans *

Workload Examination for Cache Redesign

* LHD: improving cache hit rate by maximizing hit density, NSDI’17

…

…

LRU List
MRU LRU

Mostly hits, each incurring promotions => shuffling hottest objects

Mostly misses => useless list maintenance
Cyclic scans + large working set => thrashing

LRU List
LRUMRU

Cache capacity

No need for frequent LRU-like list manipulation

6

• Cache-friendly: random, highly skewed accesses *

• Cache-unfriendly: sequential scans *

Workload Examination for Cache Redesign

* LHD: improving cache hit rate by maximizing hit density, NSDI’17

…

…

LRU List
MRU LRU

Mostly hits, each incurring promotions => shuffling hottest objects

Mostly misses => useless list maintenance
Cyclic scans + large working set => thrashing

LRU List
LRUMRU

Cache capacity

No help or even harm (e.g., cache thrashing)

No need for frequent LRU-like list manipulation

6

 Design – Data Structures

Current list-based cache implementation

Doubly-linked LRU List

Hash
table

MRU LRU

Static (frozen) Dynamic

Subset of
DC-hash

7

 Design – Operations

8

• Insertions and evictions occur only in Dynamic Cache (DC)

 Design – Operations

8

• A lookup first goes to Frozen Cache (FC)

 Design – Operations

9

• If it is a Frozen cache miss, then look up in DC

 Design – Operations

10

• No cache management on FC accesses (less work)
• No contention either (lock-free)
• Read-only FC-Hash can use faster hash table implementations

 Design – Performance/Scalability Benefits

11

• FrozenHot alternates through THREE phases:
• Learning: merges FC+DC and observes operations
• Construction: rebuilds FC with learned parameters
• Frozen: serves with split FC and DC

 Design – Life Cycles

12

• FC Construction
• Splitting top-k objects, O(1) complexity
• Constructing FC-Hash, O(n) in background

• FC Destruction: merging FC+DC lists and removing FC-Hash, O(1)
• Support all list-based implementations, e.g., LRU, FIFO, LFU

 Design – Periodic FC Rebuild

13

• Spatial: how much and which part of the cache should be frozen
• Temporal: how long each frozen cache should last

 Design – Learning Key Parameters

14

Twitter 29

• Value of k in top-k (list already maintains order)
• More frozen, more hits in FC, gradually more misses in total

 Design – FC Size Auto-configuration

15

• Value of k in top-k (list already maintains order)
• More frozen, more hits in FC, gradually more misses in total

 Design – FC Size Auto-configuration

15

Twitter 29

• Controller monitors dynamic performance
• Ends Frozen phase accordingly

 Design – Frozen Phase Length Auto-configuration

16

Evaluation – Setup

• Compared Systems
• LRU-FH v.s Relaxed-LRU from Meta HHVM (production)
• FIFO-FH v.s. FIFO
• LFU-FH v.s. LFU

• Workloads: 7 Twitter traces and 12 MSR Cambridge traces

17

Evaluation – Throughput Improvement

H
ig

he
r

is
 b

et
te

r

Number of Threads

Throughput Improvement - MSR

18

• Increasing gains with growing concurrency level

Evaluation – Throughput Improvement

H
ig

he
r

is
 b

et
te

r 3.4X

1.8X

Number of Threads

Throughput Improvement - MSR

18

Throughput Improvement - MSR

• Increasing gains with growing concurrency level
• Also with workloads having higher locality

Evaluation – Throughput Improvement

MSR Twitter

* For the breakdown of the improvement and timelines of different phases, see the paper

H
ig

he
r

is
 b

et
te

r 3.4X

1.8X

Number of Threads

Throughput Improvement - MSR

Number of Threads

Throughput Improvement - Twitter
6.5X

2.2X

18

• Stacked bars show portion of time at each Frozen Ratio range
• Observation period: observe accesses to decide internal parameters

Evaluation – Frozen Ratio Selection

* Two concurrency levels: 20-thread (left bar) and 72-thread (right bar)

Portion
of Time

LRU-FH

Frozen Ratio

19

• Stacked bars show portion of time at each Frozen Ratio range
• Observation period: observe accesses to decide internal parameters
• Observation 1: higher concurrency, more frozen

Evaluation – Frozen Ratio Selection

Portion
of Time

LRU-FH

Frozen Ratio

* Two concurrency levels: 20-thread (left bar) and 72-thread (right bar)
19

• Stacked bars show portion of time at each Frozen Ratio range
• Observation period: observe accesses to decide internal parameters
• Observation 1: higher concurrency, more frozen
• Observation 2: Frozen Ratio highly depends on workload patterns

Evaluation – Frozen Ratio Selection

Portion
of Time

LRU-FH

Frozen Ratio

* Two concurrency levels: 20-thread (left bar) and 72-thread (right bar)
19

• Stacked bars show portion of time at each Frozen Ratio range
• Observation period: observe accesses to decide internal parameters
• Observation 1: higher concurrency, more frozen
• Observation 2: Frozen Ratio highly depends on workload patterns
• Observation 3: 100% Frozen when workloads are cache-unfriendly

Evaluation – Frozen Ratio Selection

Portion
of Time

LRU-FH

Frozen Ratio

* Two concurrency levels: 20-thread (left bar) and 72-thread (right bar)
19

Conclusion

Key Observation:
• In-memory cache needs redesign
• Continuous, full cache maintenance is wasteful

Open-sourced: https://github.com/ziyueqiu/FrozenHot.git

ziyueqiu@cs.cmu.edu
https://ziyueqiu.github.io/

periodically-rebuilt frozen cache + live-updated dynamic cache

https://github.com/ziyueqiu/FrozenHot.git
mailto:ziyueqiu@cs.cmu.edu
https://ziyueqiu.github.io/

