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Cross-cloud/region data access
Cross-region

» Resource shortages in one region
 Collaborators in different regions
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Current approaches and downsides

Remote data access
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Macaron: cost-aware auto-configuring cache
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« Auto-configures cache to minimize remote access costs

* Macaron reduces cost by up to 99%

» Can achieve both cost-efficiency and low latency

* On average, 61% lower latency

- Adapts to workloads’ data access pattern changes
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Goal: performance and cost-efficiency
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Design #1: two-level caching

Observation: Cloud object storage workloads have large
objects and high spread of accesses
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Design #2: adaptive cache sizes

» Cost-efficient cache sizes vary across workloads
» Ranges from 62GB-52TB (1-81% of data size accessed)

» Cost-efficient cache sizes changes over time
» Without adaptivity, costs can be up to 6.7x higher.
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Region or Cloud A

Remote data lake

Architecture

Application
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Optimization loop

Application
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Optimizing object storage cache

Expected cost curve: How much cost is expected during the
next time window for each object storage cache size?
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Optimizing object storage cache

Expected cost curve: How much cost is expected during the
next time window for each object storage cache size?

Expected Cost Curve

Cost breakdown % 75 mmmm QOperations
- Egress ©K Cache miss bytes S Egress
- Capacity ©¢ Cache size 5 50 CépaCIty
+ Operation O Miss ratio, # of requests | © ¢ | %  Min cost
% _
o | |
0 5000 10000

Cache size (GB)

12 Hojin Park © November 2024



More in the paper

Optimizing the DRAM cache cluster
Extending miniature simulation* for workload analysis
Prototype implementation insights

Mechanism for adaptivity

* Waldspurger et al. "Cache Modeling and Optimization using Miniature Simulations" ATC17
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Evaluation setup

- Data: 15 IBM traces* and 4 traces collected from VMware and Uber

+ Configurations: AWS pricing model, N. California and N. Virginia regions

» Trace-based Macaron simulator

» Macaron prototype used for cloud validation (details in paper)
- Cost of running prototype will be more than STMM

* Eytan et al. "It's Time to Revisit LRU vs. FIFO" HotStorage20
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Macaron significantly reduces costs
IBM Uber
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Macaron reduces costs by up to 89% compared to ECPC
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Macaron is cost-efficient and performant
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On average, Macaron achieves 61% lower latency and 64%
cost savings than Replicated with its dynamic cache cluster

16

Hojin Park © November 2024



Conclusion

 Auto-configures cache to minimize remote access costs
* Macaron saves costs by up to 99%

» Can achieve both cost-efficiency and low latency
* On average, 61% lower latency

+ Adapts to workloads’ data access pattern changes

More info at https://github.com/hojinp/macaron_simulator
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