Reducing Cross-Cloud/Region Costs with
the Auto-Configuring MACARON Cache

Hojin Park
Ziyue Qiu, Gregory R. Ganger, George Amvrosiadis

Carnegie
Mellon
University

Public cloud deployment

.
-

&
___J

Region or Cloud B
More computation

Data lake

Region or Cloud A
Data and some computation

2 Hojin Park © November 2024

Cross-cloud/region data access
Cross-region

» Resource shortages in one region
 Collaborators in different regions

LML jobs |
i W
: Replication

Organization X é%-

Cross-cloud

- Different features and service offerings
» Collaboration between organizations

/

Organlzatlorh—Y J:;

Hojin Park © November 2024

Current approaches and downsides

Remote data access

Region or £ 4
Cloud A | Data Lake |
A
Put
, Get ’
Region or “| |Delete
Cloud B] {@}D

ECPC
(Elastic Cloud
Provider Caching)

%o %0

| Data Lake |

_____I_T _____

| Cloud provider cache|

Full replication

— Egress cost

Downside
— Access latency

— DRAM capacity cost
— Manual configuration

— Synchronization cost
— Excess capacity cost

4 Hojin Park © November 2024

Macaron: cost-aware auto-configuring cache

Cloud A: Data and
some computation

Remote data
access

Macaron
Cache

R

"
i

Cloud B: More
computation

« Auto-configures cache to minimize remote access costs

* Macaron reduces cost by up to 99%

» Can achieve both cost-efficiency and low latency

* On average, 61% lower latency

- Adapts to workloads’ data access pattern changes

5 Hojin Park © November 2024

Goal: performance and cost-efficiency

A

Remote data access

ECPC
Latency ¢ \ manual configuration
(lower is better) | Macaron
Cache ¥ Full replication

=%

>
Cost

(lower is better)

6 Hojin Park © November 2024

Design #1: two-level caching

Observation: Cloud object storage workloads have large
objects and high spread of accesses

2000

> 1750 In-memory caching Macaron’s hyb"d cache

GC) 1500 (hlgh skewness)

= 1250 Cloud object storage

Elooo_ (low skewness) -DRAM for g

& 750

Y 500 T i

O . o

2 20 W Object storage for (g
V0 0.2 0.4 0.6 0.8 1.0

Normalized Object Rank
by Frequency (Descending)

m) Need large cache capacities to reduce data egress cost

7 Hojin Park © November 2024

Design #2: adaptive cache sizes

» Cost-efficient cache sizes vary across workloads
» Ranges from 62GB-52TB (1-81% of data size accessed)

» Cost-efficient cache sizes changes over time
» Without adaptivity, costs can be up to 6.7x higher.

80 80
[Total data size accessed [1 Total data size accessed
60 - | % Cost-efficient cache sizel 60 - Cost-efficient
o~ o~ cache size changes
2]) ¢ 2]
= =
Y40~ 3 L 40~ -~
& 207 11 ®»207 mi
\ , | : !
0] 1 ¥ e * h.d 0L —l IEEFIME =l ll=lenlel Gl I
4 9111218273445555866 75808396 4 911121827344555 586675 8(3 83 p6
Trace IDs Trace IDs

8 Hojin Park © November 2024

Region or Cloud A

Remote data lake

Architecture

Application

A |
<
Q
O
Q
-
@)
-
Q
=
-

P H

Master node

Object storage
cache manager

Object storage

9

Macaron

L

Optimization loop

Application

Macaron client

=

) Master node

)
Data
! access Controller

|
| Cache node v y Workload analyzer Q
Cache engine l

DRAM _ Capacity optimizer @
Cache cluster Reconfiguration .‘
Object storage

e mmmmmm e m—— ===

| Every 15 minutes @% cache manager

10 Hojin Park © November 2024

Optimizing object storage cache

Expected cost curve: How much cost is expected during the
next time window for each object storage cache size?

A

e

(dp)]

o

&

©

()]

13

o Next cache size
>, /
LLl

-
Object storage cache size

11 Hojin Park © November 2024

Optimizing object storage cache

Expected cost curve: How much cost is expected during the
next time window for each object storage cache size?

Expected Cost Curve

Cost breakdown % 75 mmmm QOperations
- Egress ©K Cache miss bytes S Egress
- Capacity ©¢ Cache size 5 50 CépaCIty
+ Operation O Miss ratio, # of requests | © ¢ | % Min cost
% _
o | |
0 5000 10000

Cache size (GB)

12 Hojin Park © November 2024

More in the paper

Optimizing the DRAM cache cluster
Extending miniature simulation* for workload analysis
Prototype implementation insights

Mechanism for adaptivity

* Waldspurger et al. "Cache Modeling and Optimization using Miniature Simulations" ATC17

13 Hojin Park © November 2024

Evaluation setup

- Data: 15 IBM traces* and 4 traces collected from VMware and Uber

+ Configurations: AWS pricing model, N. California and N. Virginia regions

» Trace-based Macaron simulator

» Macaron prototype used for cloud validation (details in paper)
- Cost of running prototype will be more than STMM

* Eytan et al. "It's Time to Revisit LRU vs. FIFO" HotStorage20

14 Hojin Park © November 2024

Macaron significantly reduces costs
IBM Uber

XX Egress
= Capacity
@@ Operation

Macaron reduces costs by up to 89% compared to ECPC

15 Hojin Park © November 2024

Macaron is cost-efficient and performant

o O
RN
o wu

I
N
Ul

Average Latency
(seconds)

800

600

On average, Macaron achieves 61% lower latency and 64%
cost savings than Replicated with its dynamic cache cluster

16

Hojin Park © November 2024

Conclusion

 Auto-configures cache to minimize remote access costs
* Macaron saves costs by up to 99%

» Can achieve both cost-efficiency and low latency
* On average, 61% lower latency

+ Adapts to workloads’ data access pattern changes

More info at https://github.com/hojinp/macaron_simulator

17 Hojin Park © November 2024

https://github.com/hojinp/macaron_simulator

